Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(copy, n)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(cons, app2(f, y)), z)
APP2(app2(app2(copy, 0), y), z) -> APP2(f, z)
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(app2(copy, n), y), z)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(copy, x), y)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(cons, app2(f, y))
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(f, y)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(copy, x)
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(copy, n), y)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
The TRS R consists of the following rules:
app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(copy, n)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(cons, app2(f, y)), z)
APP2(app2(app2(copy, 0), y), z) -> APP2(f, z)
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(app2(copy, n), y), z)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(copy, x), y)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(cons, app2(f, y))
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(f, y)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(copy, x)
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(copy, n), y)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
The TRS R consists of the following rules:
app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 9 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
The TRS R consists of the following rules:
app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
Used argument filtering: APP2(x1, x2) = x1
app2(x1, x2) = app2(x1, x2)
copy = copy
s = s
f = f
cons = cons
nil = nil
n = n
Used ordering: Quasi Precedence:
[app_2, n]
cons > copy
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.